

Maida Multilayer Varistors

ESD and Transient Voltage Suppression in sizes from 0402 to 2220

Maida Multilayer Varistors (MLVs) are leadless surface mount chips available in a wide range of size, voltage and capacitance values for use in a wide variety of applications

Understanding Multi-layer Varistors (MLVs)

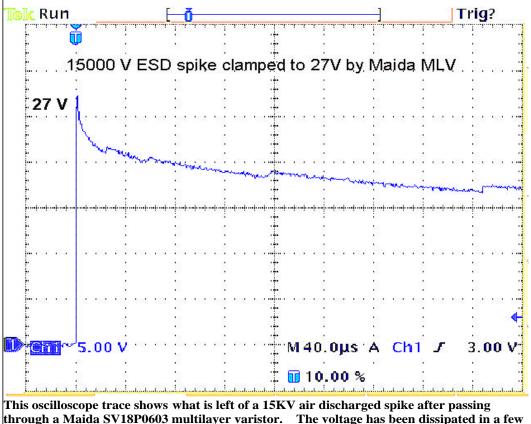
What is an MLV?

0603 MLV Chips

Those familiar with Maida Development Company's disc varistors have some idea what a varistor is, but may be unfamiliar with multi-layer varistors (MLVs). MLVs are tiny ceramic chips terminated on each end. They can be used to protect circuits from electrostatic discharge and other high voltage surges. As with disc varistors, the purpose of an MLV is to protect an electronic circuit by carrying away unwanted high voltage spikes. All varistors, including MLVs, have two operating conditions. Under normal operation there is virtually no current draw. The varistor sits idle and uses little power. However, if a large voltage spike comes into the circuit the varistor suddenly begins to conduct electricity. The varistor will carry current away from the protected circuit and to ground. As soon as the large spike passes, the varistor stops conducting and resumes its idle state. Some people think of this as a resettable fuse. The varistor resets itself after each voltage spike.

Leaded Disc varistors are typically used to protect devices plugged into household electrical outlets. They protect against all the unusual over voltage pulses that may be present in your AC power lines. MLVs operate at lower voltages and are typically used in portable battery operated devices operating on DC voltage, such as mobile phones.

MLV Advantages over wire-leaded varistor discs

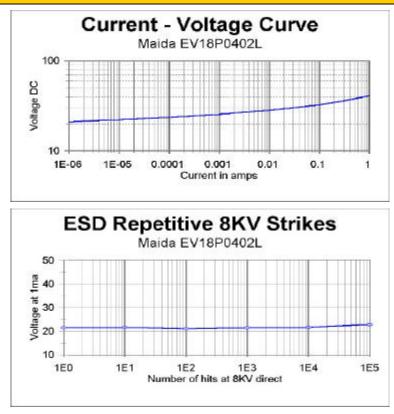

MLVs are surface mount chips sold without lead wires. They are soldered directly to the surface of a printed circuit board by the board manufacturer. Eliminating the lead wires gives MLVs an advantage over leaded discs. Capacitance and inductance in the lead wires is eliminated. This coupled with their very small size make MLVs react much faster to a pulse than a leaded disc can.

MLVs are also much easier for a board manufacturer to assemble. In many cases, leaded discs must be inserted through holes in a circuit board by hand followed by wave soldering. MLV chips can be placed onto the board by machine and easily soldered in a reflow oven along with other surface mount chips. In cases where an MLV is used to replace a low voltage varistor disc, the savings in time and processing can be significant.

The biggest advantage of MLVs is their small size. Surface mount chips lay flat on the board. Their low profile is essential in the tight designs now in use for mobile devices.

Using MLVs for ESD protection

Electrostatic Discharge (ESD) is nothing more than a sudden spark of current jumping from a charged object to any available ground. Anyone who has walked across a carpet in winter, and then touched a conductive surface has experienced the power of ESD. The spark we feel at our finger tip can be thousands of volts. The current flow is small. As soon as the stored charge is gone, the current flow stops. However, that voltage spike can be enough to destroy or lock up the delicate switch gates in semiconductors like MOSFETS and CMOS. Any handheld machine with a silicon "brain" is a potential victim of ESD pulses. Mobile phones, PDAs, pagers, remote controls, electronic games, etc. must all have a way to protect themselves from ESD damage. Each place that a discharge can enter the device must be protected. These include keypads, antennas, battery charger ports, and any other hole through the plastic case. MLVs are ideal for this job.


microseconds to a level of only 27 Volts.

EV Series for ESD protection

This is our lowest capacitance MLV series. All parts in this series are designed to protect sensitive components from high voltage Electrostatic Discharge (IEC 1000-4-2 8KV contact). Tests show that Maida MLVs will continue to provide circuit protection even after 100,000 8KV discharges. With capacitance values starting at less than 10pf for the EV18P0402L, these MLVs are ideal to protect high-speed circuits in portable hand held devices.

0402 (1005) Maida	imum Rati	ngsElectri	cal Charact	eristics			
	Continuous Applied		Typical Varistor Voltage	Minimum Number of direct 8KV ESD	Max		Typical
				pulses	8x20 µs		
	(AC)	(DC)	1mA	tolerated	(V)	(A)	(pF)
EV18P0402L	14	<18	26	10000	55	1	9
EV18P0402	14	<18	26	10000	50	1	27

Maida	timum Rati	ingsElectri	cal Charact	eristics			
	Continuous	;		Minimum	Max	Typical	
	Applied		Typical	Number			
			Varistor	of direct			
				8KV ESD			1 V IIIIS @1M⊟7
			at	pulses	8x20 µs		
	(AC)	(DC)	1mA	tolerated	(V)	(A)	(pF)
EV18P0603L	14	<18	26	10000	48	1	40
EV18P0603	14	<18	26	10000	45	1	120

The TV series is designed to suppress destructive transients that may damage circuits. This series has the lowest capacitance value possible while still providing some surge protection. These parts handle less energy than the standard SV series MLV, but their lower capacitance makes them a better choice in some high speed circuits.

				0603 (1608)						
		Maxir	num Ratings		Electrical Characteristics					
	Conti	nuous	Trar	nsient			May C	Max Clamping		
Maida Style Number	Applied Voltage		Energy	Peak Current	Varistor Voltage (@1mA DC)		Voltage (@Test Current)		Typical Cap.	
			10x1000 µs	8x20 µs	Vmin	Vmax	8x2	0 µs	@1MHz	
	(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)	
TV5R5P0603	4	5.5	0.05	20	6.9	9.3	20	1	210	
TV9P0603	6.5	9	0.05	20	11	15	25	1	180	
TV11P0603	8	11	0.05	20	13	17	30	1	170	
TV14P0603	10	14	0.05	25	16.5	20.5	35	1	150	
TV18P0603	14	18	0.05	25	22	27	45	1	120	
TV22P0603	17	22	0.05	30	26	32	50	1	90	
TV26P0603	20	26	0.05	30	32	38	60	1	60	

				0805 (2012)						
		Maxin	num Ratings		Electrical Characteristics					
Maida Style	Continuous Applied		Trar Energy	Transient Energy Peak Current		Varistor Voltage (@1mA DC)		amping tage	Typical Cap.	
Number	Vol	tage			Vmax			1 V rms @1MHz		
	(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)	
TV5R5P0805	4	5.5	0.1	40	6.9	9.3	15	2	510	
TV9P0805	6.5	9	0.15	40	11.3	15.2	20	2	320	
TV11P0805	8	11	0.15	40	13	17	25	2	290	
TV14P0805	10	14	0.15	40	17.5	23.7	30	2	250	
TV18P0805	14	18	0.15	40	23	30	40	2	200	
TV22P0805	17	22	0.15	40	28	34	50	2	180	
TV26P0805	20	26	0.15	40	33	40	60	2	100	

SV Series Standard Multilayer Varistor

The SV series is our standard MLV line. They have good surge suppression and moderate capacitance.

				0603 (160	8)						
		Maxim	um Ratings		Electrical Characteristics						
Maida Style	Style Applied	da Applied		Applied Energy Peak Curren		Varistor Voltage (@1mA DC)		Max Clamping Voltage (@Test Current)		Typical Cap.	
Number	Volt	age	10x1000 µs	s 8x20 µs Vmin Vmax 8x20 µs	1 V rms @1KHz						
	(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)		
SV5R5P0603	4	5.5	0.1	30	6.9	9.3	16	2	440		
SV9P0603	6.5	9	0.1	30	11.3	15.2	23	2	380		
SV11P0603	8	11	0.1	30	13	18	27	2	350		
SV14P0603	10	14	0.1	30	17.5	23.7	30	2	290		
SV18P0603	14	18	0.1	30	23	30	40	2	220		
SV22P0603	17	22	0.1	30	28	34	50	2	170		
SV26P0603	20	26	0.1	30	33	40	60	2	100		
SV30P0603	25	30	0.1	30	38	46	65	2	40		

				0805 (201	2)					
		Maxim	um Ratings		Electrical Characteristics					
	Conti	nuous	Tra	nsient			Max C	amping	Typical	
Maida Style		Applied Voltage		Peak Current	Varistor Varistor Current (@1m/		Vol	Max Clamping Voltage (@Test Current)		
Number	Vol	tage	10x1000 µs	8x20 µs	Vmin	Vmax	. ,		1 V rms @1KHz	
-	(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)	
SV5R5P0805	4	5.5	0.3	120	6.9	9.3	15	2	1020	
SV9P0805	6.5	9	0.3	120	11.3	15.2	24	2	640	
SV11P0805	8	11	0.3	120	13	18	27	2	580	
SV14P0805	10	14	0.3	120	17.5	23.7	30	2	500	
SV18P0805	14	18	0.3	120	23	30	40	2	400	
SV22P0805	17	22	0.3	120	28	34	50	2	360	
SV26P0805	20	26	0.3	120	33	40	58	2	280	
SV30P0805	25	30	0.3	120	38	46	65	2	200	
SV39P0805	30	39	0.3	120	42	52	80	2	150	

				1206 (321	6)						
		Maxim	um Ratings		Electrical Characteristics						
	Contin		Tra	nsient			Max Clamping		Typical		
Maida Style Number	Applied Voltage		Energy	Peak Current	Varistor Voltage (@1mA DC)		Voltage (@Test Current)		Cap.		
			10x1000 µs	8x20 µs	Vmin Vmax		8x2	0 µs	@1KHz		
	(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)		
SV5R5P1206	4	5.5	0.4	120	6.9	9.3	15	10	3700		
SV9P1206	6.5	9	0.4	150	11.3	15.2	25	10	2170		
SV14P1206	10	14	0.4	150	17.5	23.7	30	10	1670		
SV18P1206	14	18	0.4	150	23	30	40	10	1030		
SV26P1206	20	26	0.4	150	33	40	58	10	940		
SV30P1206	25	30	0.4	150	38	46	66	10	890		
SV48P1206	40	48	0.4	150	55	66	100	10	680		

			1210 (322	5)							
	Maxim	um Ratings		Electrical Characteristics							
Contir	nuous	Tra	nsient			Max Cl	amning	Typical			
Арр	lied	Energy	Peak Current	Varistor Voltage (@1mA DC)		0		Voltage		Cap.	
Volt	age					(ଞ ୮୧୨୮	Current)	1 V rms			
		10x1000 µs	8x20 µs	Vmin	Vmax	8x2	0 µs	@1KHz			
(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)			
14	18	0.9	220	23	30	40	10	1350			
20	26	0.9	220	33	40	58	10	1200			
25	30	0.9	220	38	46	66	10	900			
40	48	0.9	250	55	66	100	10	780			
50	60	0.9	250	69	83	120	10	600			
	App Volt (AC) 14 20 25 40	Continuous Applied Voltage (AC) (DC) 14 18 20 26 25 30 40 48	Applied Voltage Energy 10x1000 µs 10x1000 µs (AC) (DC) (J) 14 18 0.9 20 26 0.9 25 30 0.9 40 48 0.9	Maximum Ratings Continuous Transient Applied Voltage Energy Peak Current 10x1000 µs 8x20 µs (AC) (DC) (J) (A) 14 18 0.9 220 20 26 0.9 220 25 30 0.9 220 40 48 0.9 250	Continuous Transient Varistor Applied Voltage Energy Peak Current Varistor 10x1000 µs 8x20 µs Vmin (AC) (DC) (J) (A) (V) 14 18 0.9 220 23 20 26 0.9 220 33 25 30 0.9 220 38 40 48 0.9 250 55	Maximum Ratings Electric Continuous Transient Varistor Voltage Applied Energy Peak Current Varistor Voltage 10x1000 µs 8x20 µs Vmin Vmax (AC) (DC) (J) (A) (V) (V) 14 18 0.9 220 23 30 20 26 0.9 220 33 40 25 30 0.9 220 38 46 40 48 0.9 250 55 66	Maximum Ratings Electrical Charact Continuous Transient Varistor Voltage (@1mA DC) Max Cl Voltage Applied Voltage Energy Peak Current Varistor Voltage (@1mA DC) Max Cl Voltage 10x1000 µs 8x20 µs Vmin Vmax 8x22 (AC) (DC) (J) (A) (V) (V) 14 18 0.9 220 23 30 40 20 26 0.9 220 33 40 58 25 30 0.9 220 38 46 66 40 48 0.9 250 55 66 100	Maximum Ratings Electrical Characteristics Continuous Transient Varistor Voltage (@1mA DC) Max Clamping Voltage (@Test Current) Applied Voltage Energy Peak Current Varistor Voltage (@1mA DC) Max Clamping Voltage (@Test Current) (AC) (DC) (J) (A) (V) (V) (A) 14 18 0.9 220 23 30 40 10 20 26 0.9 220 38 46 66 10 40 48 0.9 250 55 66 100 10			

PV SeriesPower Multilayer VaristorThe PV series has higher energy handling capabilities than our standard series. These MLVs should be chosen where the application requires outstanding surge protection and high reliability.

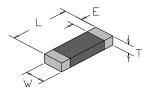
				0603 (1608	8)					
		Maxim	num Ratings		Electrical Characteristics					
	Conti	nuous	Tra	nsient			Max Cl	Typical		
Maida Style	Арр	Applied E		Peak Current		Voltage A DC)	Voltade		Cap.	
Number	Volt	tage				1 V rms				
			10x1000 µs	8x20 µs	Vmin	Vmax			@1KHz	
	(AC)	(DC)	(J)	(J) (A) (V) (V) (A)		(A)	(pF)			
PV5R5P0603	4	5.5	0.15	40	6.9	9.3	15.5	2	960	
PV14P0603	10	14	0.15	40	17.5	23.7	30	2	450	
PV18P0603	14	18	0.15	40	23	30	40	2	380	
PV22P0603	17	22	0.15	40	28	34	58	2	290	
		1			-	1		1		

				0805 (2012	2)					
		Maxim	um Ratings		Electrical Characteristics					
	Conti	nuous	Tra	nsient			Max C	amping	Typical	
Maida Style	Applied		Energy	Peak Current	Varistor Voltage (@1mA DC)		Max Clamping Voltage (@Test Current)		Typical Cap.	
Number	Voltage						1 V rms			
			10x1000 µs	8x20 µs	Vmin	Vmax	8x20 µs		@1KHz	
	(AC)	(DC)	(J)	(A)	(∨)	(V)	(V)	(A)	(pF)	
PV5R5P0805	4	5.5	0.4	120	6.9	9.3	15.5	5	1530	
PV14P0805	10	14	0.4	150	16.5	20.5	30	5	750	
PV18P0805	14	18	0.4	150	23	30	40	5	640	
PV22P0805	17	22	0.4	150	28	34	50	5	540	
PV26P0805	20	26	0.4	150	33	40	58	5	480	
PV30P0805	25	30	0.4	150	38	46	65	5	250	

1206 (3216)													
	Maxim	um Ratings		Electrical Characteristics									
Continuous Iaida		Tra	nsient			Mox Clamping		Typical					
Applied		Energy	Energy Peak Current		Varistor Voltage (@1mA DC)		Voltage						
Volt	age			, , , , , , , , , , , , , , , , , , ,		,	1 V rms						
		10x1000 µs	8x20 µs	Vmin Vmax		8x20 µs		@1KHz					
(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)					
4	5.5	0.7	150	6.9	9.3	15.5	10	4800					
10	14	0.7	200	17.5	23.7	30	10	2200					
14	18	0.7	200	23	30	40	10	1700					
20	26	0.7	200	33	40	58	10	1550					
25	30	0.7	200	38	46	66	10	1430					
40	48	0.7	200	55	66	100	10	1070					
	App Volt (AC) 4 10 14 20 25	Continuous Applied Voltage (AC) (DC) 4 5.5 10 14 14 18 20 26 25 30	Applied Voltage Energy (AC) (DC) (J) 4 5.5 0.7 10 14 0.7 14 18 0.7 20 26 0.7 25 30 0.7	Maximum Ratings Continuous Transient Applied Voltage Energy Peak Current 10x1000 µs 8x20 µs (AC) (DC) (J) (A) 4 5.5 0.7 150 10 14 0.7 200 14 18 0.7 200 20 26 0.7 200 25 30 0.7 200	Maximum Ratings Continuous Transient Applied Voltage Energy Peak Current Varistor (@1m 10x1000 µs 8x20 µs Vmin (AC) (DC) (J) (A) (V) 4 5.5 0.7 150 6.9 10 14 0.7 200 17.5 14 18 0.7 200 23 20 26 0.7 200 33 25 30 0.7 200 38	Maximum Ratings Electric Continuous Transient Applied Voltage Energy Peak Current Varistor Voltage (@1mA DC) 10x1000 µs 8x20 µs Vmin Vmax (AC) (DC) (J) (A) (V) (V) 4 5.5 0.7 150 6.9 9.3 10 14 0.7 200 17.5 23.7 14 18 0.7 200 23 30 20 26 0.7 200 33 40 25 30 0.7 200 38 46	Maximum Ratings Electrical Charact Continuous Transient Max Cl Applied Voltage Energy Peak Current Varistor Voltage (@1mA DC) Max Cl 10x1000 µs 8x20 µs Vmin Vmax 8x22 (AC) (DC) (J) (A) (V) (V) 4 5.5 0.7 150 6.9 9.3 15.5 10 14 0.7 200 17.5 23.7 30 14 18 0.7 200 23 30 40 20 26 0.7 200 33 40 58 25 30 0.7 200 38 46 66	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					

1210 (3225)													
	Maxim	um Ratings		Electrical Characteristics									
				Varistor Voltage (@1mA DC) Vmin Vmax			1 0	Typical Cap.					
	Applied Energy P Voltage					(@Test Current)		1 V rms					
		10x1000 µs	8x20 µs			8x20 µs		@1KHz					
(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)					
14	18	1.5	500	23	30	40	10	2680					
20	26	1.5	300	33	40	58	10	2100					
25	30	1.5	250	38	46	66	10	1900					
40	48	1.5	250	55	66	100	10	1600					
50	60	1.5	250	69	83	140	10	1230					
67	85	1.5	250	98	118	160	10	590					
	App Volt (AC) 14 20 25 40 50	Continuous Applied Voltage (AC) (DC) 14 18 20 26 25 30 40 48 50 60	Applied Voltage Energy (AC) (DC) (J) 14 18 1.5 20 26 1.5 25 30 1.5 40 48 1.5 50 60 1.5	Maximum Ratings Continuous Transient Applied Voltage Energy Peak Current 10x1000 µs 8x20 µs (AC) (DC) (J) (A) 14 18 1.5 500 20 26 1.5 300 25 30 1.5 250 40 48 1.5 250 50 60 1.5 250	Maximum Ratings Continuous Transient Applied Voltage Energy Peak Current Varistor 10x1000 µs 8x20 µs Vmin (AC) (DC) (J) (A) (V) 14 18 1.5 500 23 20 26 1.5 300 33 25 30 1.5 250 38 40 48 1.5 250 55 50 60 1.5 250 69	Maximum Ratings Electric Continuous Transient Varistor Voltage Applied Voltage Energy Peak Current Varistor Voltage 10x1000 µs 8x20 µs Vmin Vmax (AC) (DC) (J) (A) (V) (V) 14 18 1.5 500 23 30 20 26 1.5 300 33 40 25 30 1.5 250 38 46 40 48 1.5 250 55 66 50 60 1.5 250 69 83	$\begin{tabular}{ c c c c c c c } \hline Maximum Ratings & Electrical Charact Continuous Transient & Varistor Voltage & Energy Peak Current & Varistor Voltage & (@1mA DC) & (@1mA DC) & (@Test Voltage & Vmin Vmax 8x20 & Vmin Vmax 8x$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					

1812 (4532)									
		Maxim	um Ratings	Electrical Characteristics					
Maida Style Number	Continuous		Transient		Varistor Voltage (@1mA DC)		Max Clamping Voltage (@Test Current)		Typical Cap.
	Applied Voltage		Energy Peak Curr						
			40.4000				,		1 V rms @1KHz
			10x1000 µs	8x20 µs	Vmin Vma	Vmax	8x20 µs		₩ IKHZ
	(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)
PV18P1812	14	18	2.5	500	23	30	40	10	3800
PV26P1812	20	26	3.0	500	33	40	58	10	2950
PV30P1812	25	30	3.7	500	38	46	66	10	2820
PV48P1812	40	48	4.0	400	55	66	100	10	2740
PV60P1812	50	60	4.5	400	69	83	140	10	2220
PV85P1812	67	85	5.8	400	98	118	160	10	1400


2220 (5750)									
		Maxim	num Ratings	Electrical Characteristics					
Maida Style	Conti	nuous	Transient				Max Clamping		Typical
	Applied Voltage		Energy Peak Current		Varistor Voltage (@1mA DC)		Voltage (@Test Current)		Cap.
Number							(Wrest Current)		1 V rms
			10x1000 µs	8x20 µs	Vmin Vmax		8x20 µs		@1KHz
	(AC)	(DC)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)
PV5R5P2220	4	5.5	2	1000	6.9	9.3	15.5	10	15000
PV14P2220	10	14	2.5	1200	17.5	23.7	30	10	9600
PV18P2220	14	18	3	1200	23	30	40	10	6400
PV26P2220	20	26	5	1200	33	40	58	10	6200
PV30P2220	25	30	6	1200	38	46	66	10	5700
PV48P2220	40	48	8	1200	55	66	100	10	5200

AV Series Automotive Multilayer Varistor The AV series is designed for ultimate reliability in automotive applications. Parts in this series are designed to withstand the 24.5V jump start condition that occurrs when two 12V batteries are connected together in series. These parts are our most reliable surge suppressors, but also our most expensive.

Protects 12V supply systems									
	Maximum Ratings				Electrical Characteristics				
			Tra	Transient					
Maida Style Number	Maxiumum Continuous	Continuous Start Energy Peak Current (@1			Varistor Voltage (@1mA DC)		Max Clamping Voltage (@Test Current)		
	DC Voltage								1 V rms
	Voltage	5 mins	10x1000 µs	8x20 µs	Vmin Vmax		8x20 µs		@1KHz
	(DC)	(V)	(J)	(A)	(V)	(V)	(V)	(A)	(pF)
AV18P0805	18	24.5	0.4	150	22	29	42	5	480
AV18P1206	18	24.5	0.7	200	22	29	40	10	1090
AV18P1210	18	24.5	1.5	500	22	29	40	10	1670
AV18P1812	18	24.5	3.0	800	22	29	40	10	9600
AV18P2220	18	24.5	6.0	1500	22	29	40	10	15000

	CHIP SIZE							
	0402 (1005)	0603 (1608)	0805 (2012)	1206 (3216)	1210 (3225)	1812 (4532)	2220 (5750)	
L	0.040±0.004	0.063±0.006	0.079±0.008)	0.126±0.012	0.126±0.012	0.177±0.014	0.225±0.016	
	(1.0±0.10)	(1.60±0.15)	(2.00±0.20)	(3.2±0.30)	(3.20±0.30)	(4.5±0.35)	(5.7±0.40)	
W	0.020±0.004	0.032±0.006	0.049±0.008	0.063±0.012	0.098±0.012	0.126±0.012	0.197±0.016	
	(0.5±0.10)	(0.80±0.15)	(1.25±0.20)	(1.60±0.30)	(2.50±0.30)	(3.20±0.30)	(5.0±0.40)	
Tmax	0.024	0.035	0.043	0.067	0.071	0.079	0.079	
	(0.60)	(0.90)	(1.10)	(1.70)	(1.80)	(2.00)	(2.00)	
E	0.010±0.006	0.014±0.006	0.018±0.010	0.022±0.010	0.024±0.012	0.028±0.016	0.028±0.016	
	(0.25±0.15)	(0.35±0.15)	(0.45±0.25)	(0.55±0.25)	(0.60±0.30)	(0.70±0.40)	(0.7±0.40)	

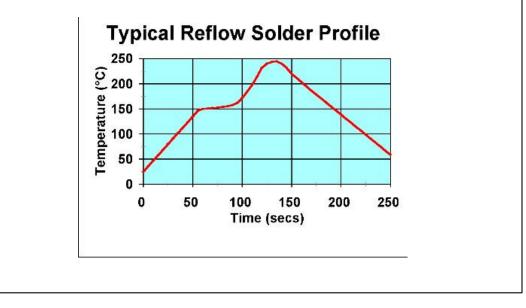
Standard dimensions: inches (mm)

CONTACTS

Maida Development Company 20 Libby St Hampton, VA 23663

Phone 757-723-0785 FAX 757-722-1194 email at sales@maida.com

www.maida.com


Maida MLVs are available in bulk package or on tape and reel.

Tape and Reel packaging available						
Size	Pcs / Reel	carrier tape				
0402	10000	paper				
0603	4000	plastic				
0805	4000	plastic				
1206	3000	plastic				
1210	3000	plastic				

Reflow Soldering Recommendations

The most common way to mount MLVs (and other similar chips) on a circuit board is to use a reflow solder process. Solder paste is applied to the circuit board at the contact points where the surface mount chips will be placed (called lands). All the chips to be soldered on a particular board are placed on their lands. Then the whole board is placed in an oven hot enough to melt the solder and cause it to 'reflow'. The solder melts and forms a smooth filet with the ends of the chips. The board is then cleaned in solvent to remove any residues.

In general we recommend that Maida MLV chips be reflow soldered at a temperature of 215 to 245°C with about 1 min at the peak temperature. This is a common range for most widely used solders and should be compatible with other surface mount chips.

